
Sentiment Labeling on Short Movie Reviews
Zihan Shao

School of Arts and Science
New York University Shanghai

Shanghai, China
Email: zs1542@nyu.edu

Yuqian Sun
School of Arts and Science

New York University Shanghai
Shanghai, China

Email: ys3982@nyu.edu

Abstract—Sentiment has long been seen as a unique charac-
teristic that only humans hold. But with the development of
technology, it is becoming possible for computers to predict
the sentiment contained in human language. In this project,
we build several binary classification models that analyse short
movie comments to predict whether it delivers a positive or
negative sentiment, which can make qualitative judgments on
audience’ reflection of the movie. The procedure of building the
model involves a data preprocessing part with many, then with
word embedding methods like Word2Vec, TFIDF, and classifier
SVM, SVC, Random Forest, Naive Bayes, FCNN. The predicted
sentiments were evaluated by accuracy. The results show that
word embedding method TF-IDF followed by a simple FCNN
outperforms all other models with 91% accuracy. In future, more
effort should be devoted to a better word embedding method or
a trainable word embedding method.

I. INTRODUCTION

With the rapid development of movie industry and social
media, it is very likely that people may leave a short comment
on social media after watching a movie. The sentiment in-
volved in the comment may provide important feedback to the
movie producers and other people in the industry. In particular,
the proportion of positive(negative) comments is an important
reference for them, while labeling each comment one by one
manually will be extremely inefficient and troublesome.

Given this background, in this project, we are going to
build classification machine learning models to predict the
sentiments (either positive or negative) delivered in short
movie comments. With this model, people may aggregate
the number of “like”s(positive) and ‘dislike”s(negative) in
numerous movie reviews.

In this paper, we will first deliver a preview of the data
set, including our methods of text preprocessing. Then we
will introduce our general methodology and some unsuccessful
early trials, which finally leads to our final model. After that,
we will look into the operations we have done to optimize
the model. In these parts, We will explain the reason why we
pick or not pick a certain method. In the end, we will offer
a detailed view of the result of the project, some interesting
facts and for future improvement.

II. DATA SET

A. Overview of the data

The data set used in the project is IMDB Dataset of 50K
Movie Reviews[1] from Kaggle. This data set contains 2 type

of the data, the comment and their corresponding sentiment
label(“positive” or “negative”). As the name suggests, there
are in total 50,000 instances and it is a balanced data set with
equal number of positive instance and negative instance.

The information for words in each review is listed as
followed.

Attributes Value

Max Length 4(words)
Min Length 2470(words)

Mean 231(words)
Variance 29358.18

Standard Deviation 171.34

Here’s the visualization of some attributes of our data. (see
figure1)

Fig. 1. Some attributes of the data set

B. Data Preprocessing

To enhance the performance of models, we usually prepro-
cess the texture data before training. The left hand side of
figure(see fig 2) shows the regular text preprocessing routine.
However, due to performance concern, several adjustments are
made to make a better word list for vectorization and later
training. Here’s the step by step explanation. Note that the
steps that are distinct from the regular routine are marked ∗.

1) Removal of numbers
2) Lowercase*

Fig. 2. pipeline for text preprocessing

In order to better classify words and clear format,
the step of unifying all the letter cases is necessary.
However, as we are dealing with the sentiment involved
in the text, one should notice that words the words with
all uppercase letters indicates a stronger emotion than
the same word in lowercase. For example, “SURPRISE”
delivers a more intense mood than “surprise”. The
improved method is that the weight of those upper-
case words is multiplied by the number of uppercase
letters(e.g. “AMAZING” is equivalent to amazing for
7 times). After that, we convert all the letters into
lowercase.

3) Slangs and Extractions*
The step of expanding contractions and slang is also
crucial for the model since term like ‘’ll” create a
lot of noise. We find some corpus that enable us to
do replacement between . This step should be done
between lowercase and removal of punctuation since the
words in the dictionary are all lowercase words and the
punctuation matters in the expanding process.

4) Reweighing interjection*
There are many similar long interjections in our dataset,
like “haha”, ‘hahaha”, ‘hahhhhaaaa”. Those words ex-
press the same feeling but are counted as different word,
which causes inefficiency. Therefore, we simplify some
long expressions of interjection and reweigh them based
on their length. For words whose lengths excess a certain
threshold(set to be 8), we find the simplest version of
the word and duplicate it with its length divided by its
simplified length.

5) Removal of punctuation*
Most punctuation characters play a role in separating
sentences. While some punctuation characters like ques-
tion marks(?) and exclamation mark(!) conveys strong

emotions. For example, the sentence ending with a “?”
adds to the doubted feeling into the meaning and the
exclamation undoubtedly strengthens the positive feeling
in that sentence. Therefore, we count the occurrences of
questions mark and exclamation mark before removing
all the punctuation characters and treat them as words.

6) Tokenization
Tokenization helps split the sentence with regard to
space and other characters predefined. This step makes
a fair division of the sentence, without which we
cannot manipulate the text. In our project, we use
nltk.tokenize to do tokeinization.

7) Stopwords*
Stopwords are words that don’t add meaning to a
sentence. Words like propositions, conjunctions etc all
belong to the range of stopwords. In most of the NLP
project, removal of stopwords is always applied dur-
ing data preprocessing. However, some of early trials
indicates that removal of stopwords even reduces the
accuracy.
In order to analyse the function of stopwords in the two
classes, we plot two figures to look into the distribution
of stopwords in both classes.(see figure3)

Fig. 3. Distribution of stopwords

In these two figures, the x-axis means the index of
stopwords list (from nltk), the y-axis represents the
average occurrences of that particular stopwords in one
movie review. It is shown that the positive class(the dark
red line) and the negative class(the dark blue line) have
superiority over one another at some stopwords, which
indicates stopwords may help us to do the classification.
Therefore, removal of stopwords is not executed in our
project.

8) Lemmatization
Lemmatization is to extract the lemma of each word. For
example, best, well→ good, cried→cry, movies→movie.
Lemmatization can aggregate words of different forms
but essentially the same, making future operations more
efficient by reducing the size of the word list.

C. Train-Validation-Test Split

we have 50000 reviews in total. We are going to use 35000
for training, 5000 for validation, and 10000 for testing.

III. METHODS

In this section, we are going to discuss how we tackle the
problem. We will first introduce the very general methodology
to solve the problem. Then we will go over some early trials
with word2vec, which finally get us to our final model with
TFIDF. In the end, we show you how we optimized our model.

A. General Methodology

Before going to any actual model, we need to nail down
some basic

1) General Pipeline
We takes the usual routine of Natural Language Process-
ing. We first convert the text, which cannot be directly
manipulated by computer, into feature vectors(Word
Embedding). Then we build a classification to model
to output the label.
In our project, we will build the model based on the
word embedding in the first place.

2) Loss function
We mainly use cross entropy loss since it is a binary
classification.

3) Evaluation
Since positive sentiment and negative sentiment are
equally important in real life application, we use the
accuracy as the metric to evaluate the performance of
our models.

B. Early trials with Word2Vec

We first tried Word2Vec for word embedding.
Word2Vec adopts a neural network that converts each dis-

tinct word into a unique vector based on its context. Since
it takes the context into consideration, the feature vector
generated will well depict the relationship between words.
For example, vectors of similar words(such as subway and
metro) should have smaller minkowski distance in the vector
space. Anotehr example is, if everything goes on smoothly,
the difference between the feature vectors for king and queen,
should be equivalent to the difference between man and
woman.

The reason why we pick up the Word2Vec in the first place
are as followed.
• It takes the context of each word into consideration.
• Since the feature vector we generates is essentially the

nodes in the hidden layer, the size of the feature vector
can be arbitrary number. This can be really helpful, since
we have a quite large corpus(data set) we may need to
reduce the dimension of the feature vector.

For implementation, We have tried both training Word2Vec
model on our data set and adopting the pretrained Word2Vec
model. For the former, We use the class gensim.Word2Vec
to generate word vectors based on our Data set. For the latter,
we adopt the Wiki-words-500-with-normalization
from TensorHub.

Followed is our result obtained by using Word2Vec for
word embedding process, followed by some usual classifiers.

For comparison, we also show the result obtained by Onehot
encoding with a Naive Bayes classifier, which might be the
most elementary method.

Word Embedding Method Classifier Accuracy

Word2Vec(Gensim)
SVM 84.6%

Random Forest 84.2%
FCNN 84.6%

Word2Vec(pretrained) SVM 84.8%

Onehot Encoding Naive Bayes 84.5%
As is listed in the table, the performances of the models

with Word2Vec are much the same as the performance of the
most elementary algorithm. This actually means the trial is
far from satisfactory since the essence of Word2Vec is a fully
connected neural network, which is much more complex than
Onehot encoding with Naive Bayes.

C. Final model

After many rounds of trials, we finally find to our best al-
gorithm, which adopts TFIDF as the word embedding method
followed by a light weight neural network.

TF-IDF is the abbreviation for Term Frequency - Inverse
Document Frequency. It is in some way an enhanced version
of Onehot encoding. Like Onehot encoding, the dimension
of the feature vector generated by TF-IDF depends on the
size of the dictionary as well. However, instead of using 1
or 0 to represent in or not in, TF-IDF to give every word
a weight based on its importance. As the name suggests, it
is basically the product of term frequency and the inverse
document frequency. Let d be a document (one movie review
in our case) in the corpus D (all movie reviews in our case),
and let t be a term(word). The rigorous mathematical definition
is as followed.

TF(t, d) =
numbers of occurrences of t in d

|d|

IDF(t, d,D) = lg(1 +
|D|

|{d′ ∈ D : t ∈ d′}|
)

TFIDF(t, d,D) = TF(t, d) · IDF(t, d,D)

The essence behind the mathematical formula is quite
intuitive. If a word is frequently occurring in one text piece
(movie review) but not in others, it should be a important word
in the text(higher TF-IDF value), vice versa.

For implementation, we use Tfidfvectorizer from
sklearn.

The results are as followed. Note that the fully connected
neural network applied here consists of two hidden layer with
relu activation(sigmoid for output) which have 16 and 32
hidden node respectively. Here we keep the results obtained
by Word2Vec and Onehot encoding for comparison.

Word Embedding Method Classifier Accuracy

TFIDF
SVM 87.6%

Random Forest 83.2%
FCNN 88.3%

Word2Vec SVM 84.8%

Onehot Encoding Naive Bayes 84.5%

As is shown in the table, by using TFIDF for word
embedding, we reached around 88%, which behaves much
better than Onehot encoding and Word2Vec.

We also tried to combine these two word-embedding
method together. We tried to re-weight the vector obtained
by Word2Vec by the vector generated. Let w = [w1, . . . , wn]
be the vector generated by TFIDF, V = [v1, . . . , vn] ∈
Mat(n × 500) where each row vector vi is the Word2Vec
vector for i-th word in the text. The new feature vector after
re-weighing is given by

v′ =

n∑
i=0

wi · vi

or in matrix form
v′ = w · V

It is worth mentioning that, in practice, implementation with
matrix multiplication by numpy is much more efficient than
adding the re-weighted vector one by one. In our model, the
latter method takes nearly 2 hours to process 35000 reviews,
while the matrix multiplication reduce the time to only 5
minutes.

After manipulating the feature vector, We applied the same
fully connected neural network as in the previous experiment
here. The result obtained is as followed.

Word Embedding Method Classifier Accuracy

TFIDF+Word2Vec FCNN 87.6%

As we can see, though the performance of combination
of TFIDF and Word2Vec is better than Word2Vec only, it is
no better than using pure TFIDF.

Therefore, we use TFIDF for the Word Embedding for our
sentiment analysis tool. As for the further classifier, Though
SVM and FCNN has approximately the same test accuracy, we
eventually select FCNN. The reasons are listed as followed.
• It is very possible that the feature vectors are not linear

separable. Also, due to the high dimensionality, it may
be hard to implement the correct kernel. However, these
problems can be easily handled by neural network. In
other words, we think neural network has larger space
for improvement when tuning parameters.

• Some readers may worry about the cost of neural network
may be much higher than SVM. However, because of
the high dimensionality, training time for SVM(around

15 minutes) is much longer than fully connected neural
network with mini-batch gradient descent. Though we
can also apply stochastic gradient descent to SVM to
reduce the run time significantly as well, yet SVM does
not outperform FCNN neural network largely.

Up to now, we have nailed our model, which is TFIDF
followed by a fully connected neural network. The rest is
optimize the hyperparameter.

D. Optimization
In this part, we are going to show you how we optimize

our model.
1) The structure of the fully connected neural network

Since there’s no closed form for designing a good
neural network, we tried a lot of well-known struc-
tures, including but not limited to [1 − 16 − 32 − 1],
[1−32−64−1], [1−64−128−1], [1−32−64−128−1],
[1−32−64−32−1], [1−128−1, 1−64−1](The number
represents the number of neurons in each layers).
Based on the accuracy, we finally use the neural network
with only one hidden layer with 32 node,and Adam for
Gradient descent.

2) Avoid Overfitting Since we are using a quite shallow
neural network for accuracy concern, there’s a great
chance for overfitting (see figure). To avoid this, we do
the following:
• Apply early stop. For implementation,

we use Earlystopping class from
tensorflow.keras.callback.

• Dropout Layer. We implement an extra Dropout
layer to avoid input layer

• We tried to apply L2(L1)-regularization. However,
though it did solve the problem of overfitting by
a little bit, it also reduced the validation accuracy.
Therefore, we are not using these two regularization
methods in our final model.

3) Max document frequency
Document frequency is a hyperparameters in the part
of TFIDF vectorizing process. The max document fre-
quency means, if the document frequency is higher
then some threshold, it will be ignored during the word
embedding. The intuition behind it is straight forward,
since some recurring word (such as “movie”, “one”,
etc.) does not help with further sentiment labeling. This
can help our model in two ways. On the one hand, it
can reduce the dimension of the feature vector. On the
other hand, since in text pre-processing part we didn’t
remove stop words in case some of them do help us to
tell the sentiment. However, some of the stop words are
trivial(such as “I”, “the”, “you”, etc.).
By doing gird search on interval [0.4, 0.7] with a step
size of 0.05, we set the max document frequency to be
0.6, which means the word that appears in more than
60% of the reviews will be ignored.(see fig 4)

4) Threshold for output
Since we use sigmoid function for the output layer

Fig. 4. Tuning max document frequency

in the FCNN, we are actually output a continuous
numerical value between 0 and 1. We usually use a
threshold to round it into 1 and 0 as the categorical value
representing “positive” and “negative”. By default, we
set the threshold 0.5.
To increase the accuracy, we do the grid search on
the validation set (5000 reviews) with in the interval
[0.4, 0.6], with a step of 0.03. It turns out that 0.55 is
the best for accuracy.(see fig 5)

Fig. 5. Tuning threshold

Now we have our final model, consists of a TFIDFvectorizer
and a fully connected neural network. See pipeline in fig 6.

Fig. 6. pipeline

IV. RESULTS, DISCUSSION & FUTURE IMPROVEMENTS

As is shown in previous sections, the combination of
TFIDF(as the Word Embedding) and a fully connected neural
network(as the following classifier) has the best performance.
After optimization, the model reaches the testing accuracy of
around 90.7%. According to the confusion matrix(see fig 7),
the model performs almost equally in labeling “positive” and
“negative” review.

Fig. 7. confusion matrix

In the rest of this section, we are going to discuss
• Strengths and shortcomings of the model
• Potential reason for good performance of TFIDF
• Future Improvement

A. Strengths and Shortcomings of the model

Our model did a good job in the following aspects.
• The accuracy, which is around 90.7%, is quite satisfac-

tory. This result is better than most of the model published
by other users on Kaggle using the same data set.

• Efficiency. The cost of our model is really low since it
only consists of a TFIDFvectorizer and a light-weight
neural network. Training, validation, and testing process
take no more than 8 minutes. However, nearly all the
well-trained(i.e. accuracy ≥ 89)model published on Kag-
gle adopts some complex neural network (LSTM, GRU, or
even Bert).

Our model needs to improve in the following aspects.
• Overfitting. In this project we have tried to use Dropout

and early stopping to avoid overfitting. However, the
model is still very likely to be overfitted.

• Limitation on topic. Since we use TFIDF for word
embedding, which calculates “relative” frequency of the
word. Therefore, once our data set consists not only
movie reviews but text with diverse topics, the perfor-
mance of our model is not granted since the diverse
corpus may add a lot of noise. For example, one word
may carry a strong negative sentiment under topic A but
not in topic B. This will cause some misclassifications
to some extent.

B. Analysis on some interesting facts

As is shown in previous sections, the performance of
Word2Vec is far from satisfactory while TFIDF performs fairly
well. However, TFIDF is a relatively simple model while

Word2Vec use a neural network which even takes the context
into consideration. The reason may be as followed.

Word2Vec and TFIDF have very different ideas. TFIDF,
in some way, is an enhanced version of Onehot encoding. It
calculates the “relative frequency” of each word. Intuitively,
the classification is based on the cumulative weight of “neg-
ative” words and “positive” words. The Word2Vec, however,
attributes each word a vector which is based on the relationship
between the words. Every word in the sentence moves a little
bit in a certain direction, and we make the classification on
the final state when the sentence finished. (see figure 8)

Fig. 8. visualization of the idea in w2v and tfidf

It is hard to say which idea is better. However, it is evident
that TFIDF performs much better in this case. One possible
reason is the average length of our corpus is too big, which
is not good for Word2Vec since there’s too much noise.

C. Future Improvement

If we have infinite time, we may keep working on

• Looking for a better fully connected neural network as
the classifier

• Solving the problem of easy overfitting
• TFIDF discards some properties of text, including tune

and context. We may need find a better word embedding
tool to take those properties into consideration. Further-
more, we may try to make the word embedding process
trainable to further enhance the performance.

V. CONCLUSION

In conclusion, we tried various way to label the sentiment of
movie reviews. We first tried Word2Vec for Word Embedding,
which gives us some unsatisfactory results comparable to
Onehot encoding & naive bayes regardless of which followed
classifier we use. It motivates us to change the method for
word embedding and we finally get to TFIDF. In the end,
TFIDF followed by a fully connected neural network gives us
the best accuracy of 90.7%, which is quite satisfactory. In the
future, more effort should be spent on a better word embedding
which takes various properties into consideration. Also, we can
try to make the word embedding process trainable to further
enhance the performance.

ACKNOWLEDGMENT

We acknowledge Prof. Li Guo and teaching assistant Yunjie
Song for conducting such a miraculously rewarding Machine
learning course this semester, without which we would not be
able to complete the above paper.

REFERENCES

[1] IMDB Dataset of 50K Movie Reviews. (2019, March 9). Kaggle.
https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-
reviews

	Introduction
	Data Set
	Overview of the data
	Data Preprocessing
	Train-Validation-Test Split

	Methods
	General Methodology
	Early trials with Word2Vec
	Final model
	Optimization

	Results, Discussion & Future improvements
	Strengths and Shortcomings of the model
	Analysis on some interesting facts
	Future Improvement

	Conclusion
	References

