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Abstract

Billiards, or pool is a time honored sport that has great popularity
among the world. Behind the interesting games, one may observe its
profound physics and mathematics nature. In particular, the motion of
the cue ball after being hit by the cue stick is a great scenario to model.
This project solves this process in a 1d sense. In this project, we first
solve the velocity and angular velocity of the cue ball analytically. With
the analytical results, we then give estimations of some crucial constant
parameters(such as friction coefficient.) Also, a numerical stimulation of
the process is designed based on the outcome of the effort above. Last
but not least, we also design a program that generates a video clip of the
motion of cue ball given any initial condition as input.

Introduction

Billiards, or pool, is a time-honored sport that has myriad branches including
Snooker, 9-balls, and Chinese 8-Balls, etc. Despite different rules of different
games, the main mechanism is quite clear: we are given a cue stick with which
we need to cue (or hit) the cue ball to let it hit the target ball into the pocket.
However, making the target ball fall into the pocket is not all of the game.
Sometimes, we need to let the cue ball go to some certain position after hitting
the target ball, which will benefit the next cueing. For example, professional
players like Ronnie O’Sullivan sometimes make the cue ball goes back to its
initial position after hitting the target ball in the long distance. The terminology
for this skill is back-spinning.

But what’s the cause of back-spinning? Generally, it is because the ball
is spinning backwardly before it hits the target ball. In this project, we are
going to solve the motion of the cue ball after hitted by the cue stick, which
means what’s the velocity of the cue ball and how does it rotate(spin) at any
time before it stops. Though we don’t take the ball-ball consideration and ball-
cusion interaction in this project, the result of this project will help us to do
this two topics (as we will know the motion of the cue ball at any time).

In this project, we are going to investigate the 1 dimensional case of the
version.
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Methodology

As is mentioned in the introduction part, we only model the 1−dim case i.e. we
only consider the case that the stick(parallel to the ground) hit on the middle
line (axis of symmetry) of the cue ball(thus generating the velocity and angular
velocity of 1d).

The essential question of our model, therefore, is given the impulse provided
by the cue stick (denoted J(kg ·m/s)) and the position (here we use its vertical
distance to the center of the cue ball, denoted h), we want to know the motion
(velocity and angular velocity) of the cue ball at any time before it stops. Here’s
the visualization of our model (see Fig.1).

Figure 1: Model

This task can be divided into two sub-tasks, which are independent to some
extent.

• The cueing process. After cueing, what kind of initial condition does the
cue ball have? (or how does J and h have effect on initial velocity v0 and
initial angular velocity ω0)

• Given the initial condition of cue ball, what velocity v and angular velocity
ω does the cue ball have at any time before it stops. (With the result we
also have access to the displacement and phase of the cue ball.)

The variable and parameters we will is listed in the table below.

2



Parameters Unit Range Comment
m kg constant The mass of the cue ball
r m constant The radius of the cue ball
J kg ·m/s ≥ 0 The impulse provided by the cue stick

h m (-r, r)
Hitting position of the cue stick,
positive means above the center of the mass

v m/s ≥ 0
The velocity of the cue ball,
a function of time t,
positive means the direction is toward right

ω rad/s (-, +)
The angular velocity of the cue ball,
a function of time t,
positive means anti-clockwise

µ dimensionless (0, 1) (Sliding) friction coefficient

The main contributions of this project are

1. Solved the velocity and angular velocity of the cue ball before it stops
analytically (given initial condition).

2. Estimates the actual constant parameters (e.g. friction coefficient)
during an actual snooker game

3. Simulate the cueing process (until the cue ball stops) numerically.

4. (The most interesting part) We designed a program to generate the video
clip of cueing. That is to say, input any impulse J and the hitting position
h, a video clip depicting how the ball slides and rolls will be generated
automatically.

Now let’s come to the first contribution mentioned.

Motion of the cue ball: Given initial condition

In this part, we are to solve the cue ball’s motion given the initial velocity v0
and the initial angular velocity ω0.

Force analysis

We first do the force analysis of the model.(see Fig.2 )
As we can see, friction is the only external force (having effect on v and ω).
The magnitude is given by the formula f = µmg, while its direction is

nontrivial. We do force analysis on the contact point between cue ball and
table, denoted A. The velocity of A with respect to the table consists of 2
velocity:

• velocity of the ball as a point of mass, which is v

• velocity caused by spinning, which is ω · r

3



Figure 2: Force analysis

In that case, the velocity of A against table is v + ω · r. As the direction of
friction is against the velocity, the direction of f can be expressed as a function
of v and w (sgn function returns ±1, for positive and negative respectively,
returns 0 for 0):

sgnf (v, ω) = −sgn(v + w · r)

Given this condition, we are able to say the velocity and angular velocity is
governed by

dv

dt
= sgnf (v, ω) · µg

dω

dt
= sgnf (v, ω) ·

µmgr

I
= sgnf (v, ω) ·

µmgr
2
5mr2

= sgnf (v, w) ·
5µg

2r

(Note that here we use the fomula dw/dt = torque/inertia, where the inertia
for a solid ball is 2/5mr2)

One may found it is too complicated to write it into the differential equation.
In fact, they are merely ODE with constant growth rate. However, by writing in
this form, we emphasize the v and w are interrelated(by the term sgnf (w, v)).
Also, by writing it into ODE forms, one can approximate it numerically by the
package scipy.integrate.odeint. What’s more, if we endowed some ODE
view on this matter, we can see the state v + ω · r is in some way a fixed point.
This fixed point is stable, as every initial condition will come to the satet of
pure rolling.

According to the plot generated by code, we can see both the angular velocity
and linear velocity stay constant at the same point(see Fig.3(a) ).

Analytically, we see once v + w · r reached zero, which means the contact
point has no velocity with respect to the table.(The physical terminology is pure
rolling[1]). At this point, both dv

dt and dw
dt vanishes i.e. the linear velocity and

angular velocity will not change anymore. One extreme case is v0 + w0 · r = 0,
it will reach the state of pure rolling when t = 0 (see Fig.3(b))
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Figure 3: Plots of v and ω

Nevertheless, it is not possible that the ball will keep rolling without stop-
ping. In the next section, we’ll investigate how the ball stop.

Rolling resistance

In last section, we have shown that if we only consider the sliding friction, the
motion of the ball will keep constant once v + w · r vanishes i.e. the ball will
keep rolling at that speed. If both table and the cue ball are ideal rigid bodies,
then it is the case. However, it is not possible in the real world, as no material
is ideally rigid. In particular, the cloth of the table is far from rigid. As is
shown in fig [], a small part of the ball is contained in the cloth, which triggers
resistance other than sliding friction. According to [], as this force is comparable
to Wobject, we can analogously define its effect on object by defining its friction
coefficient. Namely, we assume the rolling friction is fr = µr ·mg.

Here are two things we need to clarify.

• As µrolling ≪ µsliding (usually µrolling has scale of 10−4 to 10−2, while
µfriction has scale of 10−1), we don’t take rolling friction into consideration
before pure rolling.

• Rolling friction reduce v and w simultaneously. Therefore, we assume the
ball is always pure rolling.

Hence, the motion of cue ball after pure rolling is governed by:

dv

dt
= −µrg

dω

dt
=

µrg

r

Motion of the cue ball

Therefore, we can combine the conclusions of above two parts. The motion of
the cue ball is governed by:
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If sgnf (v, ω) = −sgn(v + w · r) ̸= 0,

dv

dt
= sgnf (v, ω) · µg

dω

dt
= sgnf (v, w) ·

5µg

2r

If sgnf (v, ω) = −sgn(v + w · r) = 0,

dv

dt
= −µrg

dω

dt
=

µrg

r

For now, we don’t know the exact value of the constant parameters µ, µr,
and r.

Cueing process

Here we come to the first part. Given the impulse of J and the position of
hitting, what kind of initial velocity and initial angular velocty will it trigger?
(Un)Fortunately, this problem is perfectly done by early works []. The only effort
I did is to generalize the table he gives to one equation and make it consistent
with the notation that I use. After transforming, v0 and ω0 is determined by:

v0 =
J

m

ω0 = − 5hJ

2mr2

where J is the impulse the cue stick provide, and the h denotes the hitting
point(with respect to the middle point of the cue ball), h ∈ [−r, r].

Estimation of parameters

For now, we have solve the motion of the ball analytically. However, to obtain
a full picture of the motion of cue ball or to make usage of it(i.e. predict the
ball’s motion and position at any given time), we need to know the value/range
of parameters.

Here we take snooker as an example.
Parameters: m, r, J , µ, µr.
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Estimating m, r, and J

The mass m and r can be obtained directly from internet [3].

m = 0.1545(kg), r = 0.2625(m)

Though it is not necessary to know J as it is an input, it is good to know the
upper-bound of J .(e.g. we can know how long can a cue ball go at maximum).
As the fastest velocity of a cue ball recorded is 16(m/s), therefore, the maximum
of the impulse

Jmax = m · vmax = 2.472kg ·m/s

Estimating µ

One of the most interesting part. Generally speaking, the friction coefficient is
determined by the material of two objects, but the formula for it is essentially
missing. One way to do it is to do conducting by direct experiment: dragging
a ball on the table by a spring-loaded meter and read the force when the ball
has uniform linear motion. However, this method turns out to be impractical.
On the one hand, it is hard to make the cue ball sliding on the table with out
sliding. On the other hand, it is hard to determine if the velocity is uniform.

In this project, we propose a method to estimates µ based on the motion of
the cue ball. The idea is quite easy. If we can get the acceleration rate of a ball.

In the remaining part of this section, we propose a method to find the sliding
friction coefficient µ.

• Find a video clip of a long-distance backward spinning shot (it means
make the cue ball hit the target ball in the long distance and the cue ball
goes back).

• By restrict it to backward spinning, we make sure it is decelerating linearly
before it hits the ball. The backward spinning indicates the cue ball has
backward spinning ω > 0 before hitting the target, which means it has
initial angular velocity w0 > 0 and w > 0 along the way. It follows that
sgnf = −sgn(v + wr) = −1 all the time i.e. dv

dt = −µg,∀t. Thus, the
cue ball is decelerating linearly. The reason we need a long-distance is the
change of velocity is more obvious, which reduces the error.

• Extract all frames of that video clip.

• choose two consecutive frame of after the cueing, and two consecutive
frame before hitting the target ball.

• Stacking the four images together and we are able to see the position of the
cue ball at those 4 frames. Denote the pixel coordinates of four positions
x1, x2, x3, x4.
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• Denote the duration of x1 and x2 (or x3 and x4) ∆t. The average velocity
between x1 and x2 can be obtained by

va =
||x1 − x2||2

∆t

vb =
||x3 − x4||2

∆t

where || · ||2 is the euclidean distance(L2 norm). Note that here we need
to convert the pixel length to actual length. It is accessible, as we know
both the pixel length and actual length of the width of the snooker table.

• These two average velocity can be regarded as the velocity of mid point
of x1 and x2 (or x3 and x4), and the distance of the two points can be
obtained by

d = ||x1 + x2

2
− x3 + x4

2
||2

Similarly, we need to convert it to the actual length.

• µ can be derived by Kinetic Energy Theorem,

1

2
mv2a −

1

2
mv2b = −mµgd

µ = −v2a − v2b
2gd

Though the rigorous process is lengthy, the punchline is quite clear. By
finding a clip of long-distance backward spinning, we can find a period when
the cue ball is linearly decelerating, where µ is easy to solve.

Figure 4: Extracted Frames
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Here we use the video clip of the game between Ding Junhui and Ronnie
O’Sullivan at world snooker championship 2021[]. We extract frame 166, 168,
186 and 188 (see Fig.4 ).

For easy visualization, we stack 4 images together and label the pixel coor-
dinates (see Fig.5). By computation described in the above processes, we get

Figure 5: Stacked images (with pixel coordinates)

the value of sliding friction coefficient, which is

µ = 0.2520

Estimating µr

The estimation of rolling friction is quite cumbersome. [2] proposed a method
of calculating µr from µ based on geometric relations. However, this method
is not applicable here it is not possible to know the proportion of the cue ball
immersed into the cloth.

Therefore, we are only able to estimates µr like how we estimates µ above.
The problem is, we are not able to detect when does the cue ball starts to do
pure rolling. In that case, we find a clip which the ball’s velocity is small but
rolls really long, to make sure the ball is pure rolling when it is about to stop.

The video clip we use is from the game between O’Sullivan and Selby at Final
of 2020 Scottish Open [5]. We omit the process of this computation, which is
identical to the process of measuring µ. The result we get is

µr = 0.0184

The value obtained is consistent with our assumption that µr ≪ µ.
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Numerical, Implications, and Visualization

Numerical

Equipped with the analytical relations of v and ω and estimations of all con-
stant parameter, we are able to do the numerically simulate the model. As the
growth are basically constants (though with some discontinuities), we didn’t en-
counter problems when using numerical methods. The details of the numerical
simulations is in the jupyter notebook script velocity.ipynb. The basic idea
is simulate the part before and after the pure rolling state seperately by the
package scipy.integrate.odeint.

Here’s an example (see Fig.6, here we set J = 0.5kg ·m/s, h = −0.2m, which
is a typical backward spining)

Figure 6: Numerical Estimation of the model (J = 0.5kg ·m/s, h = −0.2m)

From the numerical stimulation, one is able to answer many questions, like
when does the ball starts pure rolling, when does it stop. However, these ques-
tions are also solvable from analytical solutions(see [1][2]). For more examples
of simulation, see the folder numerical.

Visualization: Generating a video clip

Here comes the most interesting part of the project. In this part, we want to
design a program that generates the video depicting cue ball’s rotation i.e. how
the cue ball moving and rotating.
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The moving side is easy to tackle, while visualizing rotating can be trouble-
some. One way to do it is to mark a point on the circle. Its trajectory with
respect to the table when cue ball is moving is analytically solvable and can
be numerically approximated. We can thus putting the movement of the point
and the movement of the ball together, which will trigger the sense of rotation
vision.

However, we use a more natural method. Given the v and ω at any time, we
are able to predict the position and the phase of the ball at any time. Therefore,
we can generate the picture of the ball at any single frame. Also, we can express
the rotation by drawing an arrow on the ball. By concatenating those frames
together, we get the video.

The file for generating the clip is video generator.py in the folder video-generator,
together with a demo.

Acknowledgements

I acknowledge Prof. Shafer Smith for conducting such a miraculously rewarding
Math Modeling course this semester, without which I would not be able to
complete the above paper.

References

[1] Ozkanlar, Abdullah. Billiard Physics: Motion of a Cue Ball after Hit by
a Cue Stick Horizontally. The Physics Educator Vol. 02, No. 01. doi/:
https://doi.org/10.1142/S2661339520500031

[2] Hierrezuelo, J. Billiard Physics: Motion of a Cue Ball after Hit by a Cue
Stick Horizontally. Physics Education.

[3] Wikipedia page of Snooker. https://en.wikipedia.org/wiki/Snooker

[4] TOP 30 Shots World Snooker Championship 2021 [BBC].
https://www.youtube.com/watch?v=1JWDKBt3eg4

[5] O’Sullivan vs Selby FINAL 2020 Scottish Open Snooker.
https://www.youtube.com/watch?v=s40aY6k3MRs

11

https://en.wikipedia.org/wiki/Snooker
https://www.youtube.com/watch?v=1JWDKBt3eg4
https://www.youtube.com/watch?v=s40aY6k3MRs

