
To Prune or Not to Prune, It is a question:
Efficiency in Semantic Segmentation

Zihan Shao
School of Arts and Science

New York University Shanghai
Shanghai, China

Email: zs1542@nyu.edu

Qianyu Zhu
School of Arts and Science

New York University Shanghai
Shanghai, China

Email: qz1086@nyu.edu

Muyang Xu
School of Computer Science and Engineering

New York University Shanghai
Shanghai, China

Email: mx648@nyu.edu

Abstract—Our project addresses the pruning method applied
to the image semantic segmentation task. Pruning is a technique
in deep learning that aids in the development of smaller and
more efficient neural networks. We aim to prune the encoder and
decoder, respectively, based on the overall symmetric encoder-
decoder structure of models for semantic segmentation. This
project first uses un-pruned UNet to pre-train on the dataset. We
investigate the encoder and decoder’s sensitivity in responding to
the pruning process with this well-trained model. Based on our
analysis, we do grid search on encoder and decoder with different
pruning techniques to find optimal parameters for pruning. Our
experiments yield a more profound observation on the impact

of the general pruning method on semantic segmentation. The
full implementation (based on PyTorch) and the trained networks
are available at the repository; please refer to the Github link
for details.
https://github.com/EddyShao/CV-FinalProject

I. INTRODUCTION

Image semantic segmentation has significant application
potential in the field of automatic driving. Suppose vehicles
can understand the images or videos collected by the camera
on the road by accurate and efficient semantic segmentation.
In that case, it can provide crucial guidance for obstacle
avoidance and path planning, which provides a relatively low-
cost information supplement for automatic driving.

In the past decade, most related progress has been achieved
by deep neural networks fed with a massive amount of image
or video data. For now, methods tackling this task are mainly
based on VGG-net and ResNet, with various attention blocks
inserted. They achieved high accuracy by capturing enormous
details of the object. Still, the exponentially exploding require-
ment for computation and memory is inefficient, hindering
their generalization ability in resource-constrained environ-
ments, such as mobile devices or real-time implementation.
Our project goal is to reduce the complexity of the model
while keeping the loss of accuracy to a low extent.

The increasing contradiction between limited computation
power and passion for deep networks boosts the idea of neural
network pruning—the task of reducing the size of a network
by removing parameters. Pruning has been proved to be an
efficient way to enhance efficiency by eliminating redundant
connections.

II. DATA SET

A. Basic information

This project uses the Semantic Drone Dataset from the
Institute of Computer Graphics and Vision [2], which consists
of 400 images from nadir (bird’s eye) view acquired at an
altitude of 5 to 30 meters above the ground. To carry on
semantic segmentation tasks, we use pixel-accurate annotation
of 24 classes (1 unlabeled class) to train and test models(see
Fig. 1).

Attributes Value
class 24
number of images 400
resolution (before processing) 6000*4000
resolution (after processing) 768*512
mean (after normalization) [0.485, 0.456, 0.406]
std (after normalization) [0.229, 0.224, 0.225]

B. Pre-processing

In the pre-processing stage, we transformed the original
RGB label masks into gray-scale masks. Each pixel contains
a value that represents its corresponding class index. To better
hold the training process and let the data fit our model, we
resized the original images and the gray-scale masks into lower
resolution (768×512 pixels). Furthermore, we normalized the
data by setting the RGB mean value as [0.485, 0.456, 0.406]
and the standard deviation as [0.229, 0.224, 0.225], which is
calculated based on millions of images from the ImageNet
datase[13].

C. Drone dataset vs. Cityscapes

Compared with Cityscapes–the traditional semantic segmen-
tation dataset, the drone dataset has a smaller size, providing
more flexibility for the training model while significantly
reducing computation time complexity [Fig. 1].

Moreover, we can observe that: most label images gen-
erated from the bird’s-eye view in the drone dataset have
distinguishable features. Those features are easily recognized
but less easily overlap with each other. Based on the drone
dataset’s simple feature structure, we speculate that if we cut
fewer essential connections in a robust training neural network,
whether we can improve the training efficiency and maintain
the prediction accuracy at the same time.

https://github.com/EddyShao/CV-FinalProject


Fig. 1. Samples from Drone Dataset and Cityscapes

III. METHODS

A. Pruning in a Nutshell, with related works

The usual pipeline of pruning is:

1) Train the model with full size
2) decide which weights/filters/channels to prune, and the

appropriate sparsity of pruning.
3) Re-train the pruned model to compensate the loss caused

by pruning

The general logic of choosing candidates for pruning is
salience-based: designing a proper scoring function, issuing
every connection a score reflecting its degree of importance
to the final prediction, and cutting the paths whose scores
are under the self-chosen threshold. The idea of pruning has
been investigated since the last 80s, and existing trails differ in
sparsity structure, scoring, scheduling, and fine-tuning choices.

1) Sparsity structure
There are two branches regarding sparsity structure:

unstructured pruning and structured pruning. The former
will replace the parameters with a small value with
zero kernels and yield a sparse model. Theoretically,
this approach can help reduce memory and running
time to some degree. However, unless the underlying
hardware and computing libraries can effectively sustain
the unstructured pruning process, it isn’t easy to achieve
substantial performance improvement after pruning.

According to “Rethinking the Value of Network
Pruning,” the sparsity schedule can be classified as
“predefined” or ”automatic.”[3] The predefined sparsity
schedule determines that each layer will be compressed
using a fixed ratio. While under the ”automatic” spar-
sity schedule, the ratio will be computed referring to
the global distribution of parameters; thus, the reduced
model after pruning is more unpredictable.

2) Scoring
The most straightforward scoring function in im-

plementation is cutting redundant connections based
on magnitude, described in the paper “Compar-
ing Biases for Minimal Network Construction with

Back-Propagation”[4]. However, the ‘smaller-norm-less-
important’ principle is not 100

Other scoring functions include measuring the sec-
ond derivative of the loss function relative to the weight
of the connection (namely, the Hessian matrix for
the weight vector). Then the non-significant weight is
trimmed [6][7].

Since computations of Hessian matrices or their
approximations are time-consuming in these methods,
several popular indicators are the scaling factor in Batch
Normalization or activation layers[8][9]. In general, ac-
tivation functions like ReLU tend to generate sparse
activation; Weights are less likely to be light (currently,
as mentioned above, we can make them spare by regu-
larizer).

3) Scheduling
Different pruning methods substantially contribute

to the different pruning amount of the model network.
Those can be roughly encapsulated into two types:
pruning all desired weight at once and pruning a fixed
fraction through several iterative steps[10].

4) fine-tuning
While fine-tuning is natural, its implementation

ways vary a lot. It is most common to iterate the
process of training-pruning. Alternative methods include
decreasing the pruning ratio (automated gradual prun-
ing)[11].

On the one hand, we would improve the efficiency
due to reduced connections, especially the back-propagation
computation part. On the other hand, we could drop the model
accuracy due to the simplified structure of the model, so it is
trained further (known as fine-tuning) to recover. Therefore,
it is easy to see, the critical mission of pruning is to find the
correct layer to prune i.e., the proper ”redundant connections.”

Theoretically, it can be fairly easy to judge whether a
connection is essential or not. One needs to iterate through
all the connections to see how the model’s performance is
influenced once we eliminate it. However, this method is
practically impossible as the complexity to complete the task
is O(2n).

Given this situation, here we have two ways to go:

1) Use certain metrics to issue every layer/node a score
and decide which connections to keep/drop. In most
cases, this method is less structured and constrained
because we treat different node in the same way if
they belong to the same type of layers (e.g. convolution
layer, fully connected layer), this may sometimes lead
to erroneous deleting of comparatively more minor but
vital parameters in deeper layers;

2) Task-Specific Pruning methods, namely, the pruning
method, are designed based on the task and the data
set.

In our project, we mainly focus on the second way.



B. Pruning for semantic segmentation

Pruning techniques have been combined closely with fea-
tures of semantic segmentation. For instance, the performance
of semantic segmentation crucially depends on contextual
information. Therefore, Wei He proposed a called context-
aware pruning [12].

Contextual dependency is not the only particularity of
semantic segmentation. Usually, models for semantic segmen-
tation are in the “symmetric” encoder-decoder structure. Given
this standard structure, it is natural to investigate pruning on
them respectively.

1) Sensitivity Testing: First, we are curious about how
encoder and decoder act to pruning. Theoretically speaking,
the loss graph with respect to sparsity should obey a relation
similar to the sigmoid function (Like population model, no
rapid growth when sparsity is low and high, but it changes
rapidly around sparsity = 0.5). However, it may not be the
story. We should not dismiss the concatenation part of the
encoder-decoder structure. Also, the different results of the
encoder and decoder will signal the traits of these models.

2) Grid Search: By doing the grid search, we can see
the optimal combination of sparsity for encoder and decoder,
respectively. In this part, various kinds of pruning methods are
tried.

C. Algorithm design

The current experiences vary primarily in their choices
regarding sparsity structure, scoring, scheduling, and fine-
tuning. Based on a rough literature review, we applied pruning
techniques.

IV. EXPERIMENTS AND RESULTS

A. Baseline

We use UNet on Drone dataset (without pruned) [14].
Training information and outcome is as below.

Attrbiutes Value
Optimizer Adam

Learning Rate 0.001
Weight Decay 0.0001

Epochs 30
val Loss 2.16

val Accuracy 66.7%
val mIou 0.176

B. Sensitivity of Encoder and Decoder

In our experiments, we applied random pruning on CONV
layer in Encoder/Decoder respectively with sparsity of from 0
to 1,step = .05 and compute the loss of the pruned model on
validation set.

Note that:
• Random pruning is not a wise choice in terms of practical

usage, but it maximizes the effects of pruning, which is
needed in this experiment.

• The bottleneck of UNet is considerably light thus ignored
• The last conv layer of the model(i.e. output layer) is not

pruned.

Fig. 2. Results of pruning encoder and decoder seperately

The result of the experiments is shown in Fig. 2. Few
conclusions can be drawn from the plots.

1) Generally speaking, the encoder is more sensitive when
the sparsity is small (before sparsity ≤ 0.5), and the
conclusion reverses when sparsity grows further.

2) (Pruning on Decoder) The degrading of performance can
be roughly fit into a sigmoid function.

3) (Pruning on Encoder) Performance of the model oscil-
lates when the sparsity of the encoder grows. (We have
tried many times and got the same result each time).
Therefore, it shows that we may reduce the efficiency
with no degrading performance by adding more sparsity
to the encoder.

Some of the facts are explainable. For 1) it is evident that
the decoder’s performance is influenced to a more considerable
extent than the same sparsity for the encoder. As the decoder
is the output part of the model, removing the weights in
the decoder disables the ability to predict. (Imagine we put
everything, including the bias to be 0, then the only output of
the model is 0)

When the sparsity is quite small, removing a small part of
the weights will not justify a great difference in the perfor-
mance. This result is also consistent with the Lottery Tickets
Theory[15], which indicates no great degrading will occur
after dropping 20% of the weights. Also, the performance will
not change dramatically when there are nearly no parameters
for predicting. Significant change is likely to occur around
sparsity = .5.

However, the plot generated by pruning purely on the en-
coder is somehow unexpected. The frequent oscillation seems
to contradict one’s common sense. Also, the plot is relatively
stable in some regions of sparsity (e.g. when sparsity is around
0.3 ).

C. Feature map and Kernel visualization

The different pruning behavior on encoder and decoder
perhaps resulted from their only asymmetry, which is the
concatenation. Therefore, we plotted out the feature maps we



got after the first down-sampling block i.e. the first feature
map that will be concatenated to the output(see Fig. 3).

Fig. 3. output after first conv layer

The plots revealed that features are still well extracted
despite pruning 20% of the weights. That is possible because
we don’t have too many parameters at the first two layers,
so 20% does not justify a big difference. Though pruned
heavily in future blocks, a considerable amount of information
is concatenated with up-sampling blocks for final prediction.
Therefore, some randomness and oscillations are introduced
to the performance.

We have also visualized kernel (see Fig. 4). We can see the
kernel changes steeply from the graph when sparsity is set
above 50%. However, graphs of the kernel don’t provide us
with a valid explanation for oscillations.

Fig. 4. Kernel of the first double-conv layer

The result of this experiment gives us several implications
for our final model.

1) By pruning ≤ 30% parameters of the decod-
ing part wisely (e.g. apply Lp metric to decide
weights/filter/channel prune), we may improve the ef-
ficiency without any loss of performance.

2) When pruning the encoder, one should take more trials
since there might be oscillations.

3) Structured pruning behaves better than unstructured
pruning in our model, partly due to the uneven distribu-
tion of weights in deeper convolution layers.

Trial Goal Sparsity
Grid Step

Encoder/
Decoder Note

Unstructured
Random/L1 10%×10%

Both,
Grid Search Global pruning

Structured
L1/L2 10%×10%

Both,
Grid Search layer-wise pruning

Pruning
Position 20% Encoder

Only

Encoder:
Structured L1

Decoder:
Unstructured Random

4) We may try not to prune the first two down-sampling
layers at all to make sure helpful information is passed
to up-sampling layers for prediction.

D. Grid Search

We have the following trials.
Here are the results visualization (see Fig. 5)

Fig. 5. Results of grid search

The 3D-Plot for Random pruning restate the conclusion we
obtained before. The salient oscillations w.r.t sparsity on the
encoder is consistent with our decision early. Also, we can
see there’s no clear correlation between encoder and decoder.
The 3D plot we got here is more or less ”spanned” by the two
curves we obtained before.
The plot of for L1 unstructured pruning is, however, consid-
ered interesting. The plot shows that despite great sparsity,
the model’s performance doesn’t change a lot. The possible
reasons are as follows:

• Though the name is fancy, L1 unstructured pruning is
simply comparing the absolute value of every single
weight and dropping the one with a small magnitude.

• UNet might be too robust for the drone dataset, which
results in a tremendous amount of small weights (We
manually checked the consequences). Deeper layers are
equipped with more parameters, but less of them are vital
for the final prediction.

• Those nuisances are dropped by pruning without harming
the performance.



Though the outcome of L1 unstructured pruning is tempting,
it would not be practical to prune out 90% of the weights. We
have also tried grid search on L2L1 structured pruning (the
plot of the results are similar, L1 shown in the fig). Here
we can see, the surface generated is much more smooth than
random pruning. Applying the L1/L2 metric shows that we
are indeed making a wiser choice of pruning.

E. Model Proposed

Fig. 6. Loss in different training stage

We choose the best-behaved model settings in grid-search,
and fine-tuning by 30 epochs to recover its accuracy loss
caused by tuning. We freeze the first half convolution lay-
ers in encoder and cut 40%-60% of parameters in the rest
convolution layers by L1 pruning, and the results in different
training stages are plotted. The result shows that the lossits
accuracy can be fully recovered after tuning stage. It is in line
with our expectations that loss increases after pruning, and
decreases after fine-tuning. But the data also imply that more
simplified model may show greater potential during the fine-
tuning stage. The model with highest sparsity (=0.6) has the
lowest loss after tuning. Compared with the baseline (loss =
2.16, accuracy = 66.7%, mIou = .176), the best result is (.87,
accuracy = 72.7%, mIou = .234). Further investigation could
be done in this direction.

V. DISCUSSION

A. Reflections and Observations

The encoder shows a more apparent instant response re-
garding the small-scale pruning, while the decoder presents
a comparatively delayed reaction. Conversely, the encoder is
much less sensitive regarding the large-scale pruning, while
the decoder’s power decays exponentially when the pruning
ratio is more significant than 50%.

In terms of UNet structure, the lower layer acts more
sensitively toward the pruning process. The entire neural
network structure is tolerant to the unstructured L1 pruning
method.

B. Future Works

Recalling on all previous progress, we have several antici-
pations of our future works:

First, we attempt to probe into the connections between
image segmentation and video segmentation. Since a video can
be regarded as an aggregation of great consecutive pictures,
the synergistic effect of those pictures’ segmentation may
contribute to a video segmentation correspondingly as a whole.
It is also essential to figure out a more efficient algorithm for
the training process, thus guaranteeing our method is cost-
effective and less time-consuming. Therefore, we may want to
explore more details: a) whether reducing model usage after
pruning can satisfy substantial video datasets while controlling
the accuracy loss b) whether the pruning method is effective
to all kinds of training images or more determinant to some
image features.

Additionally, through the asymmetrical structure of UNet,
we probed into the sensitivity of pruning w.r.t different layers
at the encoding or decoding section. The “well-organized”
neural networks motivated us to intuitively form more explicit
controlled trials. Derived from experiment results, for the next
step, we intend to figure out how we can apply those intuitive
experiment results to a more complex training model which
has not as transparent characteristics as UNet.

ACKNOWLEDGMENT

We acknowledge Prof. Robert Fergus for conducting such a
miraculously rewarding Computer Vision course this semester,
without which we would not be able to complete the above
paper.

REFERENCES

[1] Anwar, Sajid, et. al, Structured Pruning of Deep Convolutional Neural
Networks, arXiv:1512.08571

[2] Semantic Drone Dataset http://dronedataset.icg.tugraz.at
[3] Liu, Zhang, et. al, Rethinking the Value of Network Pruning,

arXiv:1810.05270
[4] Li, Hao, et. al, Pruning Filters for Efficient ConvNets, arXiv:1608.08710
[5] Ye, Jianbo, et. al, Rethinking the Smaller-Norm-Less-Informative Assump-

tion in Channel Pruning of Convolution Layers, arXiv:1802.00124
[6] LeCun, Yann, et. al, Optimal Brain Damage, in “Advances in neural

information processing systems”, pp. 598–605, 1990
[7] Hassibi, Babak and Stork, David G, Second Order Derivatives for

Network Pruning: Optimal Brain Surgeon, Morgan Kaufmann, 1993
[8] Liu, Zhuang Learning Efficient Convolutional Networks through Network

Slimming, arXiv:1708.06519
[9] Hu, Hengyuan, et. al, Network Trimming: A Data-Driven Neuron Pruning

Approach towards Efficient Deep Architectures, arXiv:1607.03250
[10] Blalock, Davis, et. al, What is the State of Neural Network Pruning?,

arXiv:2003.03033
[11] Zhu, Michael and Gupta, Suyog, To prune, or not to prune: exploring

the efficacy of pruning for model compression, arXiv:1710.01878
[12] He, Wei, et. al, CAP: Context-Aware Pruning for Semantic Segmentation,

in “2021 IEEE Winter Conference on Applications of Computer Vision
(WACV)”, pp. 959-968, 2021, doi:10.1109/WACV48630.2021.00100

[13] ImageNet, https://image-net.org/index.php
[14] Ronneberger, Olaf, et. al, U-Net: Convolutional Networks for Biomedical

Image Segmentation, arXiv:1505.04597
[15] Frankle, Jonathan et. al, The Lottery Ticket Hypothesis: Finding Sparse,

Trainable Neural Networks., arxiv.1803.03635

https://arxiv.org/pdf/1512.08571.pdf
http://dronedataset.icg.tugraz.at
https://arxiv.org/pdf/1810.05270.pdf
https://arxiv.org/pdf/1608.08710.pdf
https://arxiv.org/pdf/1802.00124.pdf
https://arxiv.org/pdf/1708.06519.pdf
https://arxiv.org/pdf/1607.03250.pdf
https://arxiv.org/pdf/2003.03033.pdf
https://arxiv.org/pdf/1710.01878.pdf
https://ieeexplore.ieee.org/document/9423237
https://image-net.org/index.php
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1803.03635.pdf

	Introduction
	Data Set
	Basic information
	Pre-processing
	Drone dataset vs. Cityscapes

	Methods
	Pruning in a Nutshell, with related works
	Pruning for semantic segmentation
	Sensitivity Testing
	Grid Search

	Algorithm design

	Experiments and Results
	Baseline
	Sensitivity of Encoder and Decoder
	Feature map and Kernel visualization
	Grid Search
	Model Proposed

	Discussion
	Reflections and Observations
	Future Works

	References

